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Example 0.1 Feedforward neural network,I

Le Cun, Bengio & Hinton [Deep learning, Nature 2015]:
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Figure: Multilayer architectures

The hierarchy of concepts allows the computer to learn complicated concepts
by building them out of simpler ones. If we draw a graph showing how these
concepts are built on top of each other, the graph is deep, with many layers.
[Deep Learning by Goodfellow, Bengio &Courville]
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Example 0.1 Feedforward neural network,II

Deep Neural Networks --+ Deep Random Matrix Theory (Deep RMT)

XoeRY, Xy =f(WiXe—1),k=1,...,L

where f : R — R is the activation function and W; are (random) weight
matrices of size N.
The input-output Jacobian reduces to a product of many (random) matrices

DWy, - - - DWoDW

where D is a diagonal matrix. Both width N and depth L are LARGE!
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Example 0.2 Stochastic Models of Economic Optimization
Input-Output Method (Chen, Mao, book page 8):

Xo =X W ---WoWy,

Xo, X1, € RN

Dang-Zheng Liu (USTC)

Deep RMT



Example 0.2 Stochastic Models of Economic Optimization

Chen, Mu-Fa, Eigenvalues, Inequalities, and Ergodic Theory,chapter 10

To conclude this chapter, let us make some remarks about the theory
of random matrices. The theory is a traditional and important branch of

mathematics and has a very wide range of applications including statistics,

192 10 Stochastic Models of Economic Optimization

physics, number theory, and even the Riemann hypothesis. Refer to M. Mehta
(1991), V.L. Girko (1990), J.B. Conrey (2003), and references within.

Mainly, there are two topics in the study of eigenvalues. The first one is the
estimation of the first few eigenvalues, as dealt with in this book. The second
one, omitted in the book, is the asymptotic behavior of the eigenvalues. In the
context of random matrices, concerning the second topic there is the famous
beautiful Wigner’s semicircle law (1955). For its modern generalization to
operator algebras, called free probability, see D. Voiculescu, K. Dykema, and
A. Nica (1992) and E. Haagerup (2002), for instance.
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Four primary sources, Mathematics & Statistics

& A Hurwitz, Uber die Erzeugung der invarianten durch integration,
Nachr. Ges. Wiss. Gottingen,1897. See Diaconis and Forrester, Hurwitz
and the origins of random matrix theory in mathematics, Random
Matrices: Theory and Applications, 2017
Invariant measure on matrix groups SO(N) and U(N)
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Four primary sources, Mathematics & Statistics

& A.Hurwitz, Uber die Erzeugung der invarianten durch integration,
Nachr. Ges. Wiss. Gottingen, 1897. See Diaconis and Forrester, Hurwitz
and the origins of random matrix theory in mathematics, Random
Matrices: Theory and Applications, 2017
Invariant measure on matrix groups SO(N) and U(N)

& J. Wishart, The generalized product moment distribution in samples
from a normal multivariate population, Biometrika, 1928
A sample covariance matrix with N samples

1 1
Sv=— Y XX =_—xx'
N Nkzlk N

where X is a p X N noisy array.
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Four primary sources, Physics

E.P. Wigner, Characteristic vectors of bordered matrices with infinite
dimensions, Ann. Math., 1955.

Truncated Hamiltonians of heavy-nuclei atoms into random matrices of finite
size N

Figure: E. P. Wigner (1902-1995)

As N — oo, study asymptotic behaviors of eigenvalues and eigenvectors.
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Four primary sources, Products of random matrices

& For a discrete-time evolution of a real or complex stochastic system
v(it+1)=Xepv(t), t=0,1,2,...,

the total evolution is effectively driven by the product of random
matrices at time t = M
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Four primary sources, Products of random matrices

& For a discrete-time evolution of a real or complex stochastic system
v(it+1)=Xepv(t), t=0,1,2,...,

the total evolution is effectively driven by the product of random
matrices at time t = M

O Bellman [
I
initiated the study of products of random
matrices and proved LLN & CLT.
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Abel Prize Laureates 2020

The Norwegian Academy of Science and Letters has decided
to award the Abel Prize for 2020 to

Hillel Furstenberg

Hebrew University of Jerusalem, Israel

Gregory Margulis

Yale University, New Haven, CT, USA

“for pioneering the use of methods from probability and dynamics in group
theory, number theory and combinatorics.”

A central branch of probability theory is the study of
random walks, such as the route taken by a tourist
exploring an unknown city by flipping a coin to
decide between turning left or right at every cross.
Hillel Furstenberg and Gregory Margulis invented
similar random walk technigues to investigate the
structure of linear groups, which are for instance sets
of matrices closed under inverse and product. By
taking products of randomly chosen matrices, one

. =
growth says about the structure of the group,

Furstenberg and Margulis introduced visionary
and powerful concepts, solved formidable
problems and discovered surprising and fruitful
connections between group theory, probability
theory, number theory, combinatorics and graph
theory. Their work created a school of thought
which has had a deep impact on many areas of
mathematics and applications.

from the study of random

m products of
matrices, in 1963, Hillel Furstenberg introduced and
classified a notion of fundamental importance, now

Zheng Liu (USTC)

called Furstenberg boundary. Using this, he gave a
Poisson type formula expressing harmonic functions
on a general group in terms of their boundary values.
In his works on random walks at the beginning of the
*60s, some in collaboration with Harry Kesten, he
also obtained an important criterion for the positivity
of the largest Lyapunoy exponent.

Motivated by Diophantine approximation, in 1967,
Furstenberg introduced the notion of disjointness

of ergodic systems, a notion akin to that of being
coprime for integers. This natural notion turned

out to be exiremely deep and have applications to

a wide range of areas including signal processing
and filtering questions in electrical engineering, the
geometry of fractal sets, homogeneous flows and
number theory. His "»2 »3 conjecture" is a beautifully
simple example which has led to many further
developments. He considered the two maps taking
squares and cubes on the complex unit circle, and
proved that the only closed sets invariant under both
these maps are either finite or the whole circle. His
conjecture states that the only invariant measures are
either finite or rotationally invariant. In spite of efforts
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Lyapunov exponents

O In 1892, Lyapunov studied the stability of solutions of equations
v(t) = X, v(0) =vo € RV,

where X,y is a continuous and bounded function from R to the space of
N x N real matrices, and proved that the Lyapunov exponent of a solution

. 1
A(vo) == h];gsup " log [|v(?)]]-

o

was finite for every solution with vy # 0.
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Lyapunov exponents

O In 1892, Lyapunov studied the stability of solutions of equations
v(t) = X, v(0) =vo € RV,

where X,y is a continuous and bounded function from R to the space of
N x N real matrices, and proved that the Lyapunov exponent of a solution

o

. 1
A(vo) == h];gsup " log [|v(?)]]-

was finite for every solution with vy # 0.

& Through the works of Furstenberg, Kesten, Oseledets, Kingman, Ruelle,
Margulis, Avila and other mathematicians, Lyapunov exponents have
recently emerged as an important concept in (stochastic) dynamical
systems, products of random matrices and maps, spectral theory of
(random) Schrodinger operators; see e.g. Wilkinson, What are Lyapunov
exponents, and why are they interesting? BAMS 2017
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Connection with

® Random Schrodinger operators
Bougerol&Lacroix. Products of random matrices with applications to
Schrodinger operators, 1985

& Dynamical systems

& Wireless communication, MIMO networks

& Free probability theory

& Deep Neural Networks --+» Deep Random Matrix Theory (Deep RMT)

¢ Random walks on matrix groups [Benoist&Quint, Random Walks on
Reductive Groups| ~» Random walks on BIG matrix groups
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Law of Large Numbers

Furstenberg & Kesten [Ann. Math. Statist., 1960] initiated the study of
products of random matrices and proved LLN & CLT.

Q Classical LLN & CLT for N = 1:

1 1 X
Zlog |yl = — S log|X,|.
77 108 [T M}; og | X/

Dang-Zheng Liu (USTC) Deep RMT

15/28



Law of Large Numbers

initiated the study of
products of random matrices and proved LLN & CLT.
O Classical LLN & CLT for N = 1:

1 1<
MlogIHM! = Mkz_;k)g | X
' W ] For any fixed N, the largest Lyapunov
exponent with probability 1
) 1
Amax 1= Mh—I>HOO M log ||HM”

exists. Further, all Lyapunov exponents exist by Multiplicative Ergodic
Theorem )

1
Ar = lim M log (kth largest eigenvalue ofH;{,,HM) , k=1,2,...,N.

M—o0
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Calculating Lyapunov exponents

Very hard to find explicit formulae of Lyapunov exponents, posed as an
outstanding problem by

O Largest exponent for a finite set of matrices with positive entries

& All the Lyapunov spectrum for real Ginibre (zero-mean normal)
ensemble and complex Ginibre

(B(N_k“))), k=1,....N,

1 2
e = = (log—i-w >

2 B

where ¢ (x) := I"(x) /T'(x) denotes the digamma function.
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DPP structure

¢ Eigenvalue PDF of log(II},II)/) (Determinantal point process):

N .
P(x1,...,xy) = Cydet [gj—1(x)];,_, [T (ev—e™),
1<j<k<N

see
QO DPP with correlation kernel

1 N
P(xl, ce ,XN) = ﬁ det [KN(xj’xk)]iJ:I’

2mi Js, 2mi s — 1 D(s) \ (1 + N)

—ioco

Hoo gs [ dr ¢ T(r) (T(s+N)\""
oty = [ § 8T (T

where ¢ > 0 and X encircles 0, —1,...,1 — N;
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Local limits

O For any fixed N and as M — oo, N finite Lyapunov exponents for 11, are
asymptotically independent Gaussian random variables
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Local limits

O For any fixed N and as M — oo, N finite Lyapunov exponents for 11, are
asymptotically independent Gaussian random variables

& For any fixed M and as N — oo, with the largest eigenvalue

Xmax = max{xy,...,xy},
1/3n2/3 M1
P (@% (xmax —logNM — log %) < t) — F(t)

where the GUE Tracy-Widom distribution

(L)
Fa(r) =1 +Z( kl) /( ) det[Kairy (xi, 3],
: 1,00

Ai(x)Ai'(y) — Ai(y)Ai' (x)
Xx—y
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GUE Tracy-Widom distribution

‘At the Far Ends of a New Universal Law’ from Quanta Magazine.
A potent theory has emerged explaining a mysterious statistical law that arises
throughout physics and mathematics

ST Gty ‘ >
P EK i 2
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Many products of large matrices

Known results about products of Ginibre matrices Iy, = Xjs - - - X5 X:

(1) Finite N & M — oo, Gaussian

(2) Finite M & N — oo, RMT statistics

A very natural question arises:

What happens when both M and N go to infinity?

Motivation 1:

Connect limit theorems in classical Probability Theory to RMT statistics in
Random Matrix Theory

Motivation 2:

In Some Open Problems in Random Matrix Theory and the Theory of
Integrable Systems. II , P. Deift (ICM 2006, plenary; Poincare
Prize) ended with “There are many other areas, closely related to the
problems in the above list, where much progress has been made in recent
years, and where much remains to be done. These include: . .., singular
values of »n products of m x m random matrices as n, m — oo, and many
others”.
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Phase transitions

Finite Lyapunov exponents for I, equivalently, eigenvalues of log(II},I1y),
two independent papers:

[1] G. Akemann, Z. Burda, and M. Kieburg. From integrable to chaotic
systems: Universal local statistics of Lyapunov exponents, arXiv:1809.05905.
Europhysics Letter, 126 (4), 40001: p1-p7, 2019.

[2] L., D. Wang(UCAS) , Y. Wang(HENU), Lyapunov exponent, universality
and phase transition for products of random matrices, arXiv:1810.00433. To
appear in CMP

A phase transition for the largest finite Lyapunov exponents
(I) Weakly correlated regime as M /N — oo, Gaussian
(I) Intermediate regime as M /N — ~ € (0, 00), New distribution Fe(7y; )
(III) Strongly correlated regime of M /N — 0, Tracy-Widom F,
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Criticality

oo
FCrlt 77 Z
k=1

/( \ det[Kcrit(7§xivxj)]ﬁjzldkx?
1,00

where

14ic0 ds dt
Kcrit(ry; 67 77) = /1 o 5 . s

—ico 2w [y, 2mi

with 3_ ., being a contour starting from —oo — ie, looping around
{0,—1,—2,... } positively, and then going to —oo + ie.

Transition: From criticality, as v — 0o, Gaussian, while v — 0, GUE
Tracy-Widom F; after proper scalings.
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Relevant works, I

& Hanin, Nica, Products of Many Large Random Matrices and Gradients in
Deep Neural Networks, arXiv:1812.05994, CMP 2020,

& Gorin, Sun, Gaussian fluctuations for products of random matrices,
arXiv: 1812.06532, Am J Math 2022
log-correlated Gaussian field (finite M) and Gaussian field

O Ahn, Fluctuations of S-Jacobi Product Processes, arXiv:1910.00743,
PTRF2022
truncated orthogonal, unitary, symplectic matrices real, complex,
quaternion

' Hanin, Paouris, Non-asymptotic Results for Singular Values of Gaussian
Matrix Products, arXiv: 2005.08899, GAFA 2021

O
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Relevant works, II

Complex eigenvalues of 11y = X - - - X

¢ A very similar transition for complex eigenvalues occurs!!!

(I) Weakly correlated regime as M /N — oo, Gaussian
(1) Intermediate regime as M /N — ~ € (0, 00), New distribution
(II) Strongly correlated regime of M /N — 0, Ginibre statistics

& Jiang, Qi, Spectral Radii of Large Non-Hermitian Random Matrices,
Journal of Theoretical Probability, 2017. Gumbel, a new distribution,
logarithmic normal
Empirical Distributions of Eigenvalues of Product Ensembles Journal of
Theoretical Probability, 2019 Uniform on the disk

& Eigenvalue statistics for Products of real Gaussian matrices, in progress,
with Yanhui Wang
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Future Problems

Product of independent random matrices 11y = Xjs - - - X1 where all Xk are of
size N, consider relevant problems in the large N limit

& Question 1: Product of large (doubly) stochastic matrices
Cf. Stochastic Models of Economic Optimization, Chen, Mu-Fa,
Eigenvalues, Inequalities, and Ergodic Theory, chapter 10

& Question 2: Universality for finite-size Lyapunov exponents
where all entries of X; may be assumed to be i.i.d. with certain higher
moments

O Far-seeing Plan:
I) Random Walks on Big Matrix Groups
II) Large-Dimensional Dynamical Systems
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Weinan E, ICM 2022 talk

Weinan E, ICM 2022, A Mathematical Perspective on Machine Learning

Concluding remarks: This is all about math in high dimension

o Compared with polynomials, neural networks provide a much more effective
tool for approximating functions in high dimension.

o Opens up a new subject in mathematics: high dimensional analysis.
o supervised learning: high dimensional functions
o unsupervised learning: high dimensional probability distributions
o reinforcement learning: high dimensional Bellman equations
o time series: high dimensional dynamical systems
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Thank vyou!
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