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Example 0.1 Feedforward neural network,I

Le Cun, Bengio & Hinton [Deep learning, Nature 2015]:

Figure: Multilayer architectures

The hierarchy of concepts allows the computer to learn complicated concepts
by building them out of simpler ones. If we draw a graph showing how these
concepts are built on top of each other, the graph is deep, with many layers.
[Deep Learning by Goodfellow, Bengio &Courville]
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Example 0.1 Feedforward neural network,II

Deep Neural Networks 99K Deep Random Matrix Theory (Deep RMT)

X0 ∈ RN , Xk = f (WkXk−1), k = 1, . . . ,L

where f : R→ R is the activation function and Wk are (random) weight
matrices of size N.
The input-output Jacobian reduces to a product of many (random) matrices

DWL · · ·DW2DW1

where D is a diagonal matrix. Both width N and depth L are LARGE!
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Example 0.2 Stochastic Models of Economic Optimization

Input-Output Method (Chen, Mao, book page 8):

X0 = XLWL · · ·W2W1, X0,XL ∈ RN
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Example 0.2 Stochastic Models of Economic Optimization

Chen, Mu-Fa, Eigenvalues, Inequalities, and Ergodic Theory,chapter 10
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Four primary sources, Mathematics & Statistics

♠ A. Hurwitz, Über die Erzeugung der invarianten durch integration,
Nachr. Ges. Wiss. Göttingen,1897. See Diaconis and Forrester, Hurwitz
and the origins of random matrix theory in mathematics, Random
Matrices: Theory and Applications, 2017
Invariant measure on matrix groups SO(N) and U(N)

♠ J. Wishart, The generalized product moment distribution in samples
from a normal multivariate population, Biometrika, 1928
A sample covariance matrix with N samples

SN =
1
N

N∑
k=1

XkXt
k =

1
N

XXt

where X is a p× N noisy array.

Dang-Zheng Liu (USTC) Deep RMT 7 / 28



Four primary sources, Mathematics & Statistics
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Four primary sources, Physics

E.P. Wigner, Characteristic vectors of bordered matrices with infinite
dimensions, Ann. Math., 1955.
Truncated Hamiltonians of heavy-nuclei atoms into random matrices of finite
size N

Figure: E. P. Wigner (1902–1995)

As N →∞, study asymptotic behaviors of eigenvalues and eigenvectors.
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Four primary sources, Products of random matrices

♠ For a discrete-time evolution of a real or complex stochastic system

v(t + 1) = Xt+1v(t), t = 0, 1, 2, . . . ,

the total evolution is effectively driven by the product of random
matrices at time t = M

ΠM = XM · · ·X2X1.

♥ Bellman [ Limit theorems for non-commutative operations I. Duke
Math., 1954], Furstenberg & Kesten [Products of random matrices.,
Ann. Math. Statist., 1960] initiated the study of products of random
matrices and proved LLN & CLT.
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Abel Prize Laureates 2020
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Lyapunov exponents

♥ In 1892, Lyapunov studied the stability of solutions of equations

v̇(t) = Xtv, v(0) = v0 ∈ RN ,

where X(·) is a continuous and bounded function from R+ to the space of
N×N real matrices, and proved that the Lyapunov exponent of a solution

λ(v0) := lim sup
t→∞

1
t

log ‖v(t)‖.

was finite for every solution with v0 6= 0.

♠ Through the works of Furstenberg, Kesten, Oseledets, Kingman, Ruelle,
Margulis, Avila and other mathematicians, Lyapunov exponents have
recently emerged as an important concept in (stochastic) dynamical
systems, products of random matrices and maps, spectral theory of
(random) Schrödinger operators; see e.g. Wilkinson, What are Lyapunov
exponents, and why are they interesting? BAMS 2017
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Connection with

♠ Random Schrödinger operators
Bougerol&Lacroix. Products of random matrices with applications to
Schrodinger operators, 1985

♠ Dynamical systems

♠ Wireless communication, MIMO networks

♠ Free probability theory

♠ Deep Neural Networks 99K Deep Random Matrix Theory (Deep RMT)

♥ Random walks on matrix groups [Benoist&Quint, Random Walks on
Reductive Groups]  Random walks on BIG matrix groups
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Benoist&Quint, Random Walks on Reductive Groups
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Law of Large Numbers

Furstenberg & Kesten [Ann. Math. Statist., 1960] initiated the study of
products of random matrices and proved LLN & CLT.
♥ Classical LLN & CLT for N = 1:

1
M

log |ΠM| =
1
M

M∑
k=1

log |Xk|.

♠ [ Furstenberg & Kesten ’60 ] For any fixed N, the largest Lyapunov
exponent with probability 1

λmax := lim
M→∞

1
M

log ‖ΠM‖

exists. Further, all Lyapunov exponents exist by Multiplicative Ergodic
Theorem [Oseledets, Trans. Moscow Math. Soc., ’68],

λk := lim
M→∞

1
2M

log
(
kth largest eigenvalue of Π∗MΠM

)
, k = 1, 2, . . . ,N.
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Calculating Lyapunov exponents

Very hard to find explicit formulae of Lyapunov exponents, posed as an
outstanding problem by [Kingman, Ann. Probab., ’73].

♥ Largest exponent for a finite set of matrices with positive entries
[Pollicott, Invent. Math., ’10]

♠ All the Lyapunov spectrum for real Ginibre (zero-mean normal)
ensemble [Newman, CMP’86] and complex Ginibre [Forrester, J. Stat.
Phys., ’ 13],

λk =
1
2

(
log

2
β

+ ψ
(β

2
(N − k + 1)

))
, k = 1, . . . ,N,

where ψ(x) := Γ′(x)/Γ(x) denotes the digamma function.
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DPP structure

♦ Eigenvalue PDF of log(Π∗MΠM) (Determinantal point process):

P(x1, . . . , xN) = CN det
[
gj−1(xi)

]N
i,j=1

∏
1≤j<k≤N

(exj − exk),

see [Akemann, Kieburg, Wei, J. Phys.A, ’13]

♥ DPP with correlation kernel

P(x1, . . . , xN) =
1

N!
det
[
KN(xj, xk)

]N
i,j=1,

KN(x, y) =

∫ c+i∞

c−i∞

ds
2πi

∮
Σ

dt
2πi

ext−ys

s− t
Γ(t)
Γ(s)

(
Γ(s + N)

Γ(t + N)

)M+1

,

where c > 0 and Σ encircles 0,−1, . . . , 1− N; [Kuijlaars-Zhang, CMP
’14].
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Local limits

♥ For any fixed N and as M →∞, N finite Lyapunov exponents for ΠM are
asymptotically independent Gaussian random variables [Akemann,
Burda, Kieburg, J. Phys.A, ’14].

♠ For any fixed M and as N →∞, with the largest eigenvalue
xmax = max{x1, . . . , xN}, [L.-Wang-Zhang, AIHP Probab. Stat., ’16]
P
(

21/3N2/3

(M+1)2/3

(
xmax − log NM − log (M+1)M+1

MM

)
≤ t
)
→ F2(t)

where the GUE Tracy-Widom distribution

F2(t) = 1 +

∞∑
k=1

(−1)k

k!

∫
(t,∞)k

det[KAiry(xi, xj)]
k
i,j=1dkx,

KAiry(x, y) =
Ai(x)Ai′(y)− Ai(y)Ai′(x)

x− y
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GUE Tracy-Widom distribution

‘At the Far Ends of a New Universal Law’ from Quanta Magazine.
A potent theory has emerged explaining a mysterious statistical law that arises
throughout physics and mathematics
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Many products of large matrices

Known results about products of Ginibre matrices ΠM = XM · · ·X2X1:
(1) Finite N & M →∞, Gaussian
(2) Finite M & N →∞, RMT statistics
A very natural question arises:
What happens when both M and N go to infinity?
Motivation 1:
Connect limit theorems in classical Probability Theory to RMT statistics in
Random Matrix Theory
Motivation 2:
In Some Open Problems in Random Matrix Theory and the Theory of
Integrable Systems. II [SIGMA, ’17], P. Deift (ICM 2006, plenary; Poincare
Prize) ended with “There are many other areas, closely related to the
problems in the above list, where much progress has been made in recent
years, and where much remains to be done. These include: . . ., singular
values of n products of m× m random matrices as n,m→∞, and many
others”.
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Phase transitions

Finite Lyapunov exponents for ΠM, equivalently, eigenvalues of log(Π∗MΠM),
two independent papers:
[1] G. Akemann, Z. Burda, and M. Kieburg. From integrable to chaotic
systems: Universal local statistics of Lyapunov exponents, arXiv:1809.05905.
Europhysics Letter, 126 (4), 40001: p1-p7, 2019.
[2] L., D. Wang(UCAS) , Y. Wang(HENU), Lyapunov exponent, universality
and phase transition for products of random matrices, arXiv:1810.00433. To
appear in CMP
A phase transition for the largest finite Lyapunov exponents

(I) Weakly correlated regime as M/N →∞, Gaussian

(II) Intermediate regime as M/N → γ ∈ (0,∞), New distribution Fcrit(γ; t)

(III) Strongly correlated regime of M/N → 0, Tracy-Widom F2
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Criticality

Fcrit(γ; t) = 1 +

∞∑
k=1

(−1)k

k!

∫
(t,∞)k

det[Kcrit(γ; xi, xj)]
k
i,j=1dkx,

where

Kcrit(γ; ξ, η) =

∫ 1+i∞

1−i∞

ds
2πi

∮
Σ−∞

dt
2πi

1
s− t

Γ(t)
Γ(s)

e
γs2

2 −ηs

e
γt2

2 −ξt
,

with Σ−∞ being a contour starting from −∞− iε, looping around
{0,−1,−2, . . . } positively, and then going to −∞+ iε.
Transition: From criticality, as γ →∞, Gaussian, while γ → 0, GUE
Tracy-Widom F2 after proper scalings.
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Relevant works, I

♠ Hanin, Nica, Products of Many Large Random Matrices and Gradients in
Deep Neural Networks, arXiv:1812.05994, CMP 2020,

♠ Gorin, Sun, Gaussian fluctuations for products of random matrices,
arXiv: 1812.06532, Am J Math 2022
log-correlated Gaussian field (finite M) and Gaussian field

♥ Ahn, Fluctuations of β-Jacobi Product Processes, arXiv:1910.00743,
PTRF2022
truncated orthogonal, unitary, symplectic matrices real, complex,
quaternion

♥ Hanin, Paouris, Non-asymptotic Results for Singular Values of Gaussian
Matrix Products, arXiv: 2005.08899, GAFA 2021

♦ ...
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Relevant works, II

Complex eigenvalues of ΠM = XM · · ·X1

♥ A very similar transition for complex eigenvalues occurs!!!
[L., Yanhui Wang, Phase transitions for infinite products of large
non-Hermitian random matrices, arXiv:1912.11910]

(I) Weakly correlated regime as M/N →∞, Gaussian
(II) Intermediate regime as M/N → γ ∈ (0,∞), New distribution

(III) Strongly correlated regime of M/N → 0, Ginibre statistics

♠ Jiang, Qi, Spectral Radii of Large Non-Hermitian Random Matrices,
Journal of Theoretical Probability, 2017. Gumbel, a new distribution,
logarithmic normal
Empirical Distributions of Eigenvalues of Product Ensembles Journal of
Theoretical Probability, 2019 Uniform on the disk

♠ Eigenvalue statistics for Products of real Gaussian matrices, in progress,
with Yanhui Wang
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Future Problems

Product of independent random matrices ΠM = XM · · ·X1 where all XK are of
size N, consider relevant problems in the large N limit

♠ Question 1: Product of large (doubly) stochastic matrices
Cf. Stochastic Models of Economic Optimization, Chen, Mu-Fa,
Eigenvalues, Inequalities, and Ergodic Theory, chapter 10

♠ Question 2: Universality for finite-size Lyapunov exponents
where all entries of Xk may be assumed to be i.i.d. with certain higher
moments

♥ Far-seeing Plan:
I) Random Walks on Big Matrix Groups
II) Large-Dimensional Dynamical Systems
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Weinan E, ICM 2022 talk

Weinan E, ICM 2022, A Mathematical Perspective on Machine Learning
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Thank you!
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